Research Article Details
Article ID: | A14176 |
PMID: | 29550812 |
Source: | Cell Physiol Biochem |
Title: | Lack of ClC-2 Alleviates High Fat Diet-Induced Insulin Resistance and Non-Alcoholic Fatty Liver Disease. |
Abstract: | BACKGROUND/AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. This study aims to investigate whether chloride channel 2 (ClC-2) is involved in high fat diet (HFD)-induced NAFLD and possible molecular mechanisms. METHODS: ClC-2 expression was liver-specifically downregulated using adeno-associated virus in C57BL/6 mice treated with a chow diet or HFD for 12 weeks. Peripheral blood and liver tissues were collected for biochemical and pathological estimation respectively. Western blotting was applied to detect the protein expressions of lipid synthesis-related enzymes and the phosphorylated level of IRS-1, Akt and mTOR. RESULTS: ClC-2 mRNA level was significantly increased in patients with non-alcoholic steatohepatitis, which positively correlated with the plasma levels of alanine transaminase (ALT), aspartate transaminase (AST) and insulin. Knockdown of ClC-2 in liver attenuated HFD-induced weight gain, obesity, hepatocellular ballooning, and liver lipid accumulation and fibrosis, accompanied by reduced plasma free fatty acid (FFA), triglyceride (TG), total cholesterol (TC), ALT, AST, glucose and insulin levels and homeostasis model of insulin resistance (HOMA-IR) value. Moreover, HFD-treated mice lacking ClC-2 showed inhibited hepatic lipid accumulation via regulating lipid metabolism through decreasing sterol regulatory element binding protein (SREBP)-1c expression and its downstream targeting enzymes such as fatty acid synthase (FAS), HMG-CoA reductase (HMGCR) and acetyl-Coenzyme A carboxylase (ACCα). In addition, in vivo and in vitro results demonstrated that ClC-2 downregulation in HFD-treated mice or HepG2 cells increased the sensitivity to insulin via activation of IRS-1/Akt/mTOR signaling pathway. CONCLUSION: Our present study reveals a critical role of ClC-2 in regulating metabolic diseases. Mice lacking ClC-2 are associated with a remarkably beneficial metabolic phenotype, suggesting that decreasing ClC-2 may be an attractive therapeutic strategy for the treatment of NAFLD. |
DOI: | 10.1159/000488164 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T15 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | HMGCR | inhibitor | Enzyme | P04035 | HMDH_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |