Research Article Details
Article ID: | A14512 |
PMID: | 29375205 |
Source: | World J Gastroenterol |
Title: | INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. |
Abstract: | AIM: To characterize the efficacy of the dual FXR/TGR5 receptor agonist INT-767 upon histological endpoints in a rodent model of diet-induced and biopsy-confirmed non-alcoholic steatohepatitis (NASH). METHODS: The effects of INT-767 on histological features of NASH were assessed in two studies using Lepob/ob (ob/ob) NASH mice fed the AMLN diet (high fat with trans-fat, cholesterol and fructose). In a proof-of-concept study, Lepob/ob (ob/ob) NASH mice were first dosed with INT-767 (3 or 10 mg/kg for 8 wk). A second ob/ob NASH study compared INT-767 (3 and 10 mg/kg) to obeticholic acid (OCA) (10 or 30 mg/kg; 16 wk). Primary histological endpoints included qualitative and quantitative assessments of NASH. Other metabolic and plasma endpoints were also assessed. A comparative assessment of INT-767 and OCA effects on drug distribution and hepatic gene expression was performed in C57Bl/6 mice on standard chow. C57Bl/6 mice were orally dosed with INT-767 or OCA (1-30 mg/kg) for 2 wk, and expression levels of candidate genes were assessed by RNA sequencing and tissue drug levels were measured by liquid chromatography tandem-mass spectrometry. RESULTS: INT-767 dose-dependently (3 and 10 mg/kg, PO, QD, 8 wk) improved qualitative morphometric scores on steatohepatitis severity, inflammatory infiltrates and fibrosis stage. Quantitative morphometric analyses revealed that INT-767 reduced parenchymal collagen area, collagen fiber density, inflammation (assessed by Galectin-3 immunohistochemistry) and hepatocyte lipid droplet area following INT-767 treatment. In a comparative study (16 wk), the FXR agonists OCA (10 and 30 mg/kg) and INT-767 (3 and 10 mg/kg) both improved NASH histopathology, with INT-767 exerting greater therapeutic potency and efficacy than OCA. Mechanistic studies suggest that both drugs accumulate similarly within the liver and ileum, however, the effects of INT-767 may be driven by enhanced hepatic, but not ileal, FXR function. CONCLUSION: These findings confirm the potential utility of FXR and dual FXR/TGR5 activation as disease intervention strategies in NASH. |
DOI: | 10.3748/wjg.v24.i2.195 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T17 | Farnesoid X-activated receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T21 | Diacylglycerol O-acyltransferase 2 | DGAT2 | inhibitor | Enzyme | Q96PD7 | DGAT2_HUMAN | Details |
T31 | Galectin-3 | LGALS3 | inhibitor | Enzyme | P17931 | LEG3_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D184 | INT-767 | Chemical drug | -- | FXR agonist; TGR5 agonist | Enhance lipid metabolism | Under investigation | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |