Research Article Details
Article ID: | A01484 |
PMID: | 34729306 |
Source: | Acta Pharm Sin B |
Title: | 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. |
Abstract: | The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy. |
DOI: | 10.1016/j.apsb.2021.03.022 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T21 | Diacylglycerol O-acyltransferase 2 | DGAT2 | inhibitor | Enzyme | Q96PD7 | DGAT2_HUMAN | Details |
T22 | Stearoyl-CoA desaturase | SCD | inhibitor | Enzyme | O00767 | SCD_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D055 | Calcium | Chemical drug | DB01373 | CAST; COMP; CP; BMP4; MGP | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |