Research Article Details
Article ID: | A16707 |
PMID: | 28231800 |
Source: | Lipids Health Dis |
Title: | Dietary intervention, but not losartan, completely reverses non-alcoholic steatohepatitis in obese and insulin resistant mice. |
Abstract: | BACKGROUND: Dietary intervention is the cornerstone of non-alcoholic steatohepatitis (NASH) treatment. However, histological evidence of its efficacy is limited and its impact on hepatic pathways involved in NASH is underreported. The efficacy of the angiotensin receptor type 1 blocker losartan is controversial because of varying results in a few animal and human studies. We evaluated the effect of dietary intervention versus losartan on NASH and associated systemic metabolic features in a representative mouse model. METHODS: Male C57BL/6 J mice with high fat-high sucrose diet (HF-HSD) induced NASH, obesity, insulin resistance and hypercholesterolemia were subjected to dietary intervention (switch from HF-HSD to normal chow diet (NCD)) (n = 9), continuation HF-HSD together with losartan (30 mg/kg/day) (n = 9) or continuation HF-HSD only (n = 9) for 8 weeks. 9 mice received NCD during the entire experiment (20 weeks). We assessed the systemic metabolic effects and performed a detailed hepatic histological and molecular profiling. A P-value of < 0.05, using the group with continuation of HF-HSD only as control, was considered as statistically significant. RESULTS: Dietary intervention normalized obesity, insulin resistance, and hypercholesterolemia (for all P < 0.001), and remarkably, completely reversed all histological features of pre-existent NASH (for all P < 0.001), including fibrosis measured by quantification of collagen proportional area (P < 0.01). At the hepatic molecular level, dietary intervention targeted fibrogenesis with a normalization of collagen type I alpha 1, transforming growth factor β1, tissue inhibitor of metalloproteinase 1 mRNA levels (for all P < 0.01), lipid metabolism with a normalization of fatty acid translocase/CD36, fatty acid transport protein 5, fatty acid synthase mRNA levels (P < 0.05) and markers related to mitochondrial function with a normalization of hepatic ATP content (P < 0.05) together with sirtuin1 and uncoupling protein 2 mRNA levels (for both P < 0.001). Dietary intervention abolished p62 accumulation (P < 0.01), suggesting a restoration of autophagic flux. Losartan did not significantly affect obesity, insulin resistance, hypercholesterolemia or any histological NASH feature. CONCLUSIONS: Dietary intervention, and not losartan, completely restores the metabolic phenotype in a representative mouse model with pre-existent NASH, obesity, insulin resistance and hypercholesterolemia. |
DOI: | 10.1186/s12944-017-0432-7 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T23 | Type-1 angiotensin II receptor | AGTR1 | antagonist | GPCR | P30556 | AGTR1_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D209 | Losartan | Chemical drug | DB00678 | AGTR1 antagonist&binder | Anti-fibrosis | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |