Research Article Details
Article ID: | A17352 |
PMID: | 27828718 |
Source: | J Med Food |
Title: | 5,7-Dimethoxyflavone Attenuates Obesity by Inhibiting Adipogenesis in 3T3-L1 Adipocytes and High-Fat Diet-Induced Obese C57BL/6J Mice. |
Abstract: | The antiobesity effect of 5,7-dimethoxyflavone (DMF) was evaluated in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese C57BL/6J mice. The accumulation of lipid droplets and triglycerides in adipocytes was dose dependently suppressed by DMF through inhibition of adipogenesis. DMF downregulated the adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR]γ, CCAAT/enhancer binding protein [C/EBP]α, and sterol regulatory element-binding protein-1c [SREBP-1c]) and lipid synthesis enzymes (fatty acid synthase [FAS], acetyl-CoA carboxylase [ACC], lipoprotein lipase [LPL], and HMG-CoA reductase [HMGR]). AMP-activated protein kinase (AMPK) and AMPK related lipolytic proteins in differentiated adipocytes were activated by DMF. In the animal model, oral administration of DMF (50 mg/kg/day for 6 weeks) significantly decreased body weight gain without affecting food intake. Elevated serum levels of total cholesterol and low-density lipoprotein cholesterol were suppressed by DMF. Fat pad masses were reduced in DMF-treated obese mice, as evidenced by reduced adipocyte size. DMF altered the expression of adipogenic transcription factors in epididymal fat tissue. In addition, DMF attenuated HFD-induced nonalcoholic fatty liver disease by decreasing hepatic triglyceride accumulation. Overall, these results suggest that DMF is a potential natural agent for attenuating obesity and other obesity-related metabolic syndromes. |
DOI: | 10.1089/jmf.2016.3800 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T15 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | HMGCR | inhibitor | Enzyme | P04035 | HMDH_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |