Research Article Details
Article ID: | A02067 |
PMID: | 34512784 |
Source: | Evid Based Complement Alternat Med |
Title: | Cinnamic Acid Ameliorates Nonalcoholic Fatty Liver Disease by Suppressing Hepatic Lipogenesis and Promoting Fatty Acid Oxidation. |
Abstract: | Background: Cinnamic acid (CA) has been shown to have many beneficial effects including regulating lipid metabolism and reducing obesity. However, its effect on nonalcoholic fatty liver disease (NAFDL) has not been investigated in detail. Thus, we performed this study in order to explore CA's effect on hepatic lipid metabolism and the underlying mechanisms. Method: Oleic acid (OA) was used to induce lipid accumulation in HepG2 cells. After coincubation with CA, the cells were stained with oil red O and the triglyceride (TG) content was assessed. Key genes in lipogenesis and fatty acid oxidation pathways were tested. Additionally, db/db and wt/wt mice were divided into three groups, with the wt/wt mice representing the normal group and the db/db mice being divided into the NAFLD and CA groups. After 4 weeks of oral treatment, all mice were sacrificed and the blood lipid profile and liver tissues were assessed. Results: CA treatment reduced the lipid accumulation in HepG2 cells and in db/db mouse livers. ACLY, ACC, FAS, SCD1, PPARγ, and CD36 were significantly downregulated, while CPT1A, PGC1α, and PPARα were significantly upregulated. Conclusion: CA's therapeutic effect on NAFLD may be attributed to its ability to lower hepatic lipid accumulation, which is mediated by suppression of hepatic lipogenesis and fatty acid intake, as well as increased fatty acid oxidation. |
DOI: | 10.1155/2021/9561613 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T46 | ATP-citrate synthase | ACLY | inhibitor | Transferase | P53396 | ACLY_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T22 | Stearoyl-CoA desaturase | SCD | inhibitor | Enzyme | O00767 | SCD_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress |
---|