Research Article Details
Article ID: | A21083 |
PMID: | 25544875 |
Source: | World J Hepatol |
Title: | Involvement of the TAGE-RAGE system in non-alcoholic steatohepatitis: Novel treatment strategies. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease around the world. It includes a spectrum of conditions from simple steatosis to non-alcoholic steatohepatitis (NASH) and can lead to fibrosis, cirrhosis, liver failure, and/or hepatocellular carcinoma. NAFLD is also associated with other medical conditions such as obesity, diabetes mellitus (DM), metabolic syndrome, hypertension, insulin resistance, hyperlipidemia, and cardiovascular disease (CVD). In diabetes, chronic hyperglycemia contributes to the development of both macro- and microvascular conditions through a variety of metabolic pathways. Thus, it can cause a variety of metabolic and hemodynamic conditions, including upregulated advanced glycation end-products (AGEs) synthesis. In our previous study, the most abundant type of toxic AGEs (TAGE); i.e., glyceraldehyde-derived AGEs, were found to make a significant contribution to the pathogenesis of DM-induced angiopathy. Furthermore, accumulating evidence suggests that the binding of TAGE with their receptor (RAGE) induces oxidative damage, promotes inflammation, and causes changes in intracellular signaling and the expression levels of certain genes in various cell populations including hepatocytes and hepatic stellate cells. All of these effects could facilitate the pathogenesis of hypertension, cancer, diabetic vascular complications, CVD, dementia, and NASH. Thus, inhibiting TAGE synthesis, preventing TAGE from binding to RAGE, and downregulating RAGE expression and/or the expression of associated effector molecules all have potential as therapeutic strategies against NASH. Here, we examine the contributions of RAGE and TAGE to various conditions and novel treatments that target them in order to prevent the development and/or progression of NASH. |
DOI: | 10.4254/wjh.v6.i12.880 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I12 | 10763 | Hypertension | An artery disease characterized by chronic elevated blood pressure in the arteries. https://en.wikipedia.org/wiki/Hypertension, https://www.ncbi.nlm.nih.gov/pubmed/24352797 | disease of anatomical entity/ cardiovascular system disease/vascular disease/ artery disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |