Research Article Details
Article ID: | A22662 |
PMID: | 24377452 |
Source: | Nutrition |
Title: | Central obesity and altered peripheral adipose tissue gene expression characterize the NAFLD patient with insulin resistance: Role of nutrition and insulin challenge. |
Abstract: | OBJECTIVE: Insulin resistance (IR) and white adipose tissue (WAT) dysfunction frequently are associated with nonalcoholic fatty liver disease (NAFLD); however, the pathogenic mechanisms contributing to their clustering are not well defined. The aim of this study was to define some nutritional, anthropometric, metabolic, and genetic mechanisms contributing to their clustering. METHODS: Forty-five (20 men, 25 women) patients (age 45.7 ± 11.1 y) with recent diagnosis of NAFLD were grouped according to IR state. Energy balance was assessed using a food questionnaire and indirect calorimetry, and body composition with anthropometry and dual-energy x-ray absorptiometry. Biochemical and hormonal parameters combined with adipose tissue gene expression were determined. Microarray analysis of gene expression was performed in a subset of WAT samples from IR patients (n = 9), in the fasted state, after specific test meals (monounsaturated fatty acid [MUFA], saturated fat [SAT], and carbohydrate-rich) and after being challenged with insulin. RESULTS: IR patients exhibited higher trunk fat to leg fat ratio (P < 0.05) and had a higher ratio of SAT/MUFA fat intake (P < 0.05) than insulin-sensitive (IS) individuals. Deposition of fat in the trunk but not in the leg was directly related to liver enzyme levels (P < 0.05). IR patients also had lower adiponectin serum levels and leptin (LEP) mRNA expression in WAT compared with IS patients (P < 0.01 and P < 0.05, respectively). Microarray analysis after insulin challenge confirmed that insulin treatment induces the expression of PPARG gene and LEP and decreases GCGR gene (P < 0.05 for all) in WAT. No changes in these genes were observed in the postprandial state induced after the acute effect of specific diets. CONCLUSIONS: Patients exhibiting NAFLD and IR had preferential central fat deposition directly related to their serum alanine aminotransferase levels. These patients showed peripheral adipose tissue dysfunction and exhibited inappropriately low LEP biosynthesis that could be partially restored after anabolic conditions induced by insulin signaling. |
DOI: | 10.1016/j.nut.2013.07.017 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T08 | Tumor necrosis factor | TNF | inhibitor | Cytokine | P01375 | TNFA_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T05 | Peroxisome proliferator-activated receptor gamma | PPARG | agonist | Nuclear hormone receptor | P37231 | PPARG_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |