Research Article Details
Article ID: | A23222 |
PMID: | 23942585 |
Source: | Eur J Nutr |
Title: | Dietary walnut oil modulates liver steatosis in the obese Zucker rat. |
Abstract: | PURPOSE: Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. We aimed to clarify the impact of dietary walnut oil versus animal fat on hepatic steatosis, representing the initial step of multistage pathogenesis of NAFLD, in Zucker obese rats. METHODS: Zucker lean ad libitum (a.l.), Zucker obese a.l. or Zucker obese pair fed (p.f.) to the lean received isocaloric diets containing 8% walnut oil (W8), W14 or 14% lard (L14) (n = 10/group). Body weight, clinical serology, liver weight, lipid content and fatty acid composition and hepatic lipid metabolism-related transcripts were evaluated. RESULTS: Compared to lean, Zucker obese a.l. and p.f. showed hepatic triacylglyceride (TAG) accumulation. In Zucker obese p.f., W14 compared to W8 and L14 reduced liver lipids, TAG as well as hepatic omega-6 (n-6)/n-3 ratio and SCD activity index [(C18:0 + C18:1)/C18:0 ratio] paralleled by decreased lipoprotein lipase mRNA in obese p.f. and elevated microsomal triglyceride transfer protein mRNA in lean and obese. Further, W14 elevated the fasting blood TAG and reduced cholesterol levels in obese. CONCLUSIONS: In our model, consumption of W14 inhibited hepatic lipid accumulation along with modulated hepatic gene expression implicated in hepatic fatty acid influx or lipoprotein assembly. These results provide first indication that dietary lipids from walnut oil are modulators of hepatic steatosis as the initial step of progressive NAFLD pathogenesis. |
DOI: | 10.1007/s00394-013-0573-z |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |