Research Article Details
Article ID: | A23580 |
PMID: | 23659066 |
Source: | Klin Med (Mosk) |
Title: | [Low and very low density lipoproteins: pathogenetic and clinical significance]. |
Abstract: | LDLP and VLDLP have different biological functions: phylogenetically older LDLP transfer FA that serve as substrates for intracellular production of energy and ATP while VLDLP transfer FA--precursors of cell membranes and eicosanoids. The cells absorb LDLP via apoB-100 endocytosis and VLDLP through apoE/B-100 receptors. VLDLP consist of palmitic and oleic VLDLP and LDLP of linoleic and linolenic LDLP. The contribution of LDLP to the development of HLP atherosclerosis and atheromatosis is negligible. LDLP form palmitic and oleic VLDLP with hydrated LDLP density. Blockade of LDLP absorption by apoB endocytosis and deficit of poly-FA constitute the etiological basis of atherosclerosis. Its pathogenetic basis is the excess of palmitic VLDLP with LDPL density in the intercellular space that block absorption of linoleic LDLP with all transferred SC poly-FA. Atheromatosis is clinically and prognostically most significant symptom of atherosclerosis associated with accumulation of ligand-free VLDLP and LDLP in arterial intima of the elastic type as the local pool of interstitial tissue for intravascular pool of intercellular medium. Type 2 diabetes mellitus in aged patients is a symptom of atherosclerosis resulting from SC poly-FA deficit and GLUT4 incompetence. Insulin-dependent cells differ in the degree of insulin resistance. Non-alcoholic fatty liver disease, synthesis of a physiological palmitic TG by hepatocytes and excessive formation of palmitic VLDLP in liver integrate pathogenesis of atherosclerosis and hepatic steatosis. The main pathogenetic factor is the excess of palmitic s-FA and palmitic TG. |
DOI: |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I07 | 1936 | Arteriosclerosis | Build-up of fatty material and calcium deposition in the arterial wall resulting in partial or complete occlusion of the arterial lumen.https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C35768 | disease of anatomical entity/cardiovascular system disease/ vascular disease/ artery disease | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D203 | Levothyroxine | Chemical drug | DB00451 | THRA agonist; THRB agonist | Anti-fibrosis | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |