Research Article Details
Article ID: | A24600 |
PMID: | 22706738 |
Source: | Turk J Gastroenterol |
Title: | Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats. |
Abstract: | BACKGROUND/AIMS: Intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and non-alcoholic fatty liver disease. Probiotics could modulate the gut flora and could influence the gut-liver axis. We aimed to investigate the preventive effect of two probiotic mixtures on the methionine choline-deficient diet-induced non-alcoholic steatohepatitis model in rats. METHODS: Two studies, short-term (2 weeks) and long-term (6 weeks), were carried out using 60 male Wistar rats. The 2-week study included six groups. Rats were fed with methionine choline-deficient diet or pair-fed control diet and were given a placebo or one of two probiotic mixtures (Pro-1 and Pro-2) by orogastric gavage. In the 6-week study, rats were allocated into four groups and were fed with methionine choline-deficient diet or pair-fed control diet and given a placebo or Pro-2. At the end of the 2- and 6-week periods, blood samples were obtained, the animals were sacrificed, and liver tissues were removed. Serum alanine aminotransferase activity was determined; histologic and immunohistochemical analysis was performed for steatosis, inflammation, protein expression of tumor necrosis factor-α, and apoptosis markers. RESULTS: In both studies, methionine choline-deficient diet caused an elevation of serum alanine aminotransferase activity, which was slightly reduced by Pro-1 and Pro-2. In the 2- and 6-week studies, feeding with methionine choline-deficient diet resulted in steatosis and inflammation, but not fibrosis, in all rats. In the 2-week study, in rats fed with methionine choline-deficient diet and given Pro-1, steatosis and inflammation were present in 2 of 6 rats. In rats fed with methionine choline-deficient diet and given Pro-2, steatosis was detected in 3 of 6 rats, while inflammation was present in 2 of 6 rats. In the 6-week study, in rats fed with methionine choline-deficient diet and given Pro-2, steatosis and inflammation were present in 3 of 6 rat livers. In both the 2- and 6-week studies, methionine choline-deficient diet resulted in tumor necrosis factor-α, proapoptotic Bax, caspase 3, caspase 8, and anti-apoptotic Bcl-2 expression in all rat livers. Pro-1 and Pro-2 treatment influenced protein expression involved in apoptosis and tumor necrosis factor-α in varying degrees. CONCLUSIONS: Pro-1 and Pro-2 decrease methionine choline-deficient diet-induced steatohepatitis in rats. The preventive effect of probiotics may be due, in part, to modulation of apoptosis and their anti-inflammatory activity. |
DOI: | 10.4318/tjg.2012.0330 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D075 | Choline | Supplement | DB00122 | PLD2 product of; PLD1 product of | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D284 | Probiotic | Supplement | -- | -- | -- | Under clinical trials | Details |