Research Article Details
Article ID: | A25272 |
PMID: | 22020821 |
Source: | Hepatol Int |
Title: | Non-alcoholic fatty liver disease: is iron relevant? |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is a common and ubiquitous disorder (Bedogni et al. in Hepatology 42:44-52, 2005; Bellentani et al. in Ann Intern Med 132:112-117, 2000) which in a proportion of subjects leads to non-alcoholic steatohepatitis (NASH), advanced liver disease and hepatocellular carcinoma. Although the factors responsible for progression of disease are still uncertain, there is evidence that insulin resistance (IR) is a key operative mechanism (Angulo et al. in Hepatology 30:1356-1362, 1999) and that two stages are involved. The first is the accumulation of triglycerides in hepatocytes followed by a "second hit" which promotes cellular oxidative stress. Several factors may be responsible for the induction of oxidative stress but hepatic iron has been implicated in various studies. The topic is controversial, however, with early studies showing an association between hepatic iron (with or without hemochromatosis gene mutations) and the progression to hepatic fibrosis. Subsequent studies, however, could not confirm an association between the presence of hepatic iron and any of the histological determinants of NAFLD or NASH. Recent studies have reactivated interest in this subject firstly, with the demonstration that hepatic iron loading increases liver cholesterol synthesis with increased lipid deposition in the liver increasing the cellular lipid burden and secondly, a large clinical study has concluded that hepatocellular iron deposition is associated with an increased risk of hepatic fibrosis, thus, strongly supporting the original observation made over a decade ago. An improvement in insulin sensitivity has been demonstrated following phlebotomy therapy but a suitably powered controlled clinical trial is required before this treatment can be implemented. |
DOI: | 10.1007/s12072-011-9304-9 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D272 | Phlebotomy | Miscellany | -- | -- | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |