Research Article Details
Article ID: | A32083 |
PMID: | 29234200 |
Source: | J Clin Exp Hepatol |
Title: | Nutrition and Muscle in Cirrhosis. |
Abstract: | As the cirrhosis progresses, development of complication like ascites, hepatic encephalopathy, variceal bleeding, kidney dysfunction, and hepatocellular carcinoma signify increasing risk of short term mortality. Malnutrition and muscle wasting (sarcopenia) is yet other complications that negatively impact survival, quality of life, and response to stressors, such as infection and surgery in patients with cirrhosis. Conventionally, these are not routinely looked for, because nutritional assessment can be a difficult especially if there is associated fluid retention and/or obesity. Patients with cirrhosis may have a combination of loss of skeletal muscle and gain of adipose tissue, culminating in the condition of "sarcopenic obesity." Sarcopenia in cirrhotic patients has been associated with increased mortality, sepsis complications, hyperammonemia, overt hepatic encephalopathy, and increased length of stay after liver transplantation. Assessment of muscles with cross-sectional imaging studies has become an attractive index of nutritional status evaluation in cirrhosis, as sarcopenia, the major component of malnutrition, is primarily responsible for the adverse clinical consequences seen in patients with liver disease. Cirrhosis is a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from other metabolic functions. Protein homeostasis is disturbed in cirrhosis due to several factors such as hyperammonemia, hormonal, and cytokine abnormalities, physical inactivity and direct effects of ethanol and its metabolites. New approaches to manage sarcopenia are being evolved. Branched chain amino acid supplementation, Myostatin inhibitors, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis. |
DOI: | 10.1016/j.jceh.2017.11.001 |

Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T08 | Tumor necrosis factor | TNF | inhibitor | Cytokine | P01375 | TNFA_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T21 | Diacylglycerol O-acyltransferase 2 | DGAT2 | inhibitor | Enzyme | Q96PD7 | DGAT2_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D612 | Rapamycin | Miscellany | -- | Immunosuppressants; Methylmalonyl CoA mutase stimulants; MTOR protein inhibitors; T lymphocyte inhibitors | -- | Under investigation | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |