Research Article Details
Article ID: | A46343 |
PMID: | 19426389 |
Source: | J Dig Dis |
Title: | Bile acids and insulin resistance: implications for treating nonalcoholic fatty liver disease. |
Abstract: | Nonalcoholic fatty liver disease is characterized by an accumulation of excess triglycerides in hepatocytes, and insulin resistance is now considered the fundamental operative mechanism throughout the prevalence and progression of the disease. Besides their role in dietary lipid absorption and cholesterol homeostasis, evidence has accumulated that bile acids are also signaling molecules that play two important roles in glucose and lipid metabolism: in the nuclear hormone receptors as farnesoid X receptors (FXR), as well as ligands for G-protein-coupled receptors TGR5. The activated FXR-SHP pathway regulates the enterohepatic recycling and biosynthesis of bile acids and underlies the down-regulation of hepatic fatty acid and triglyceride biosynthesis and very low density lipoprotein production mediated by sterol-regulatory element-binding protein-1c. The bile acid-TGR5-cAMP-D2 signaling pathway in human skeletal muscle in the fasting-feeding cycle increases energy expenditure and prevents obesity. Therefore, a molecular basis has been provided for a link between bile acids, lipid metabolism and glucose homeostasis, which can open novel pharmacological approaches against insulin resistance and nonalcoholic fatty liver disease. |
DOI: | 10.1111/j.1751-2980.2009.00369.x |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T17 | Farnesoid X-activated receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |