Research Article Details
Article ID: | A04839 |
PMID: | 33488526 |
Source: | Front Endocrinol (Lausanne) |
Title: | Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. |
Abstract: | The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD. |
DOI: | 10.3389/fendo.2020.617400 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D155 | Glucagon | Biological drug | DB00040 | GCGR agonist | Antidiabetic drug | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |