Research Article Details
Article ID: | A48736 |
PMID: | 30305645 |
Source: | Sci Rep |
Title: | Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. |
Abstract: | We aimed to assess the potential effects of hesperidin and capsaicin, independently and in combination, to prevent the development of obesity and its related metabolic alterations in rats fed an obesogenic diet. Three-month-old male Wistar rats were divided into 5 groups: Control (animals fed a standard diet), WD (animals fed a high fat/sucrose (western) diet), HESP (animals fed a western diet + hesperidin (100 mg/kg/day)), CAP (animals fed a western diet + capsaicin (4 mg/kg/day)), and HESP + CAP (animals fed a western diet + hesperidin (100 mg/kg/day) + capsaicin (4 mg/kg/day)). Hesperidin and capsaicin were administered by gavage. Capsaicin decreased body fat gain and prevented insulin resistance, whereas hesperidin showed little effect on body fat gain and no apparent effects on insulin resistance. No additive effects were observed with the combination. Capsaicin and hesperidin, separately, improved blood lipid profile, diminished hepatic lipid accumulation, and prevented non-alcoholic steatohepatitis in western diet-fed rats, but the combination showed lower effects. Hesperidin alone, and to a lesser extent capsaicin or the combination, displayed hypotensive effects in western diet-fed rats. In conclusion, capsaicin and hesperidin, separately, exhibit health beneficial effects on metabolic syndrome-related alterations in western diet-fed rats, but the effects are mitigated with the combination. |
DOI: | 10.1038/s41598-018-32875-4 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D169 | Hesperidin | Chemical drug | DB04703 | AURKB | Antiosteoporotic drug | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |