Research Article Details
Article ID: | A48756 |
PMID: | 29597210 |
Source: | Pharmacology |
Title: | Euodia daniellii Hemsl. (Bee-Bee Tree) Oil Attenuates Palmitate-Induced Lipid Accumulation and Apoptosis in Hepatocytes. |
Abstract: | Hepatic lipid accumulation and apoptosis is elevated in patients with non-alcoholic steatohepatitis and is closely associated with severity. Saturated fatty acid palmitate stimulates lipid accumulation and apoptosis in hepatocytes. In the present study, we examined bee-bee tree oil (BO)-mediated protective effects on palmitate-induced lipid accumulation and apoptosis in mouse primary hepatocytes. Cells were cultured in a control media or the same media containing 150 or 300 µmol/L of albumin-bound palmitate for 24 h. BO concentrations used were 0, 0.1, 0.2, or 0.5%. Palmitate induced lipid accumulation and mRNA expression of lipogenic genes such as SREBP1c and SCD1. However, BO prevented these changes. Furthermore, palmitate stimulated caspase-3 activity and decreased cell viability in the absence of BO. BO reduced palmitate-induced activation of caspase-3 and cell death in a dose-dependent manner. AMP-activated protein kinase inhibitors abolished the effects of BO. Furthermore, BO suppressed palmitate-induced c-Jun N-terminal kinase (JNK) phosphorylation through the 5' adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway. In conclusion, BO attenuated palmitate-induced hepatic steatosis and apoptosis through AMPK-mediated suppression of JNK signaling. These data suggest that BO is an important determinant of saturated fatty acid-induced lipid accumulation and apoptosis, and may be an effective therapeutic strategy for treatment of obesity-mediated liver diseases. |
DOI: | 10.1159/000487892 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T11 | Caspase-3 | CASP3 | inhibitor | Enzyme | P42574 | CASP3_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T22 | Stearoyl-CoA desaturase | SCD | inhibitor | Enzyme | O00767 | SCD_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |