Research Article Details
Article ID: | A52915 |
PMID: | 19584878 |
Source: | Obesity (Silver Spring) |
Title: | Metabolic implications of dietary trans-fatty acids. |
Abstract: | Dietary trans-fatty acids are associated with increased risk of cardiovascular disease and have been implicated in the incidence of obesity and type 2 diabetes mellitus (T2DM). It is established that high-fat saturated diets, relative to low-fat diets, induce adiposity and whole-body insulin resistance. Here, we test the hypothesis that markers of an obese, prediabetic state (fatty liver, visceral fat accumulation, insulin resistance) are also worsened with provision of a low-fat diet containing elaidic acid (18:1t), the predominant trans-fatty acid isomer found in the human food supply. Male 8-week-old Sprague-Dawley rats were fed a 10% trans-fatty acid enriched (LF-trans) diet for 8 weeks. At baseline, 3 and 6 weeks, in vivo magnetic resonance spectroscopy (1H-MR) assessed intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content. Euglycemic-hyperinsulinemic clamps (week 8) determined whole-body and tissue-specific insulin sensitivity followed by high-resolution ex vivo 1H-NMR to assess tissue biochemistry. Rats fed the LF-trans diet were in positive energy balance, largely explained by increased energy intake, and showed significantly increased visceral fat and liver lipid accumulation relative to the low-fat control diet. Net glycogen synthesis was also increased in the LF-trans group. A reduction in glucose disposal, independent of IMCL accumulation was observed in rats fed the LF-trans diet, whereas in rats fed a 45% saturated fat (HF-sat) diet, impaired glucose disposal corresponded to increased IMCLTA. Neither diet induced an increase in IMCLsoleus. These findings imply that trans-fatty acids may alter nutrient handling in liver, adipose tissue, and skeletal muscle and that the mechanism by which trans-fatty acids induce insulin resistance differs from diets enriched with saturated fats. |
DOI: | 10.1038/oby.2008.662 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |