Research Article Details
Article ID: | A05971 |
PMID: | 33058486 |
Source: | Pediatr Obes |
Title: | A branched-chain amino acid-based metabolic score can predict liver fat in children and adolescents with severe obesity. |
Abstract: | BACKGROUND: Eighty percent of adolescents with severe obesity suffer from non-alcoholic fatty liver disease (NAFLD). Non-invasive prediction models have been tested in adults, however, they performed poorly in paediatric populations. OBJECTIVE: This study aimed to investigate novel biomarkers for NAFLD and to develop a score that predicts liver fat in youth with severe obesity. METHODS: From a population with a BMI >97th percentile aged 9-19 years (n = 68), clinically thoroughly characterized including MRI-derived proton density fat fraction (MRI-PDFF), amino acids and acylcarnitines were measured by HPLC-MS. RESULTS: In children with NAFLD, higher levels of plasma branched-chain amino acids (BCAA) were determined. BCAAs correlated with MRI-PDFF (R = 0.46, p < .01). We identified a linear regression model adjusted for age, sex and pubertal stage consisting of BCAAs, ALT, GGT, ferritin and insulin that predicted MRI-PDFF (R = 0.75, p < .01). ROC analysis of this model revealed AUCs of 0.85, 0.85 and 0.92 for the detection of any, moderate and severe steatosis, respectively, thus markedly outperforming previously published scores. CONCLUSION: BCAAs could be an important link between obesity and other metabolic pathways. A BCAA-based metabolic score can predict steatosis grade in high-risk children and adolescents and may provide a feasible alternative to sophisticated methods like MRI or biopsy in the future. |
DOI: | 10.1111/ijpo.12739 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D201 | L-Carnitine | Supplement | DB00583 | SLC22A4; SLC22A5; CRAT; MPO | -- | Under clinical trials | Details |
D050 | Branched-chain amino acids | Biological drug | -- | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D062 | Carnitine complex | Supplement | DB00583 | SLC22A4; SLC22A5; CRAT; MPO | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |