Research Article Details
Article ID: | A01308 |
PMID: | 34794234 |
Source: | Biomed Pharmacother |
Title: | Saroglitazar and Hepano treatment offers protection against high fat high fructose diet induced obesity, insulin resistance and steatosis by modulating various class of hepatic and circulating lipids. |
Abstract: | Higher global prevalence of non-alcoholic fatty liver disease (NAFLD) is associated with obesity, steatosis, and insulin resistance (IR), and often progresses to steatohepatitis (NASH). Even after more than twenty years of research, there is still no FDA approved therapy for the treatment of fatty liver disease/NASH though, Saroglitazar - a dual PPAR α/γ agonist has been recently approved as a therapeutic option for the fatty liver disease in India. Hepatoprotective Ayurvedic formulations are widely used and are considered safe. In the present study, C57BL/6 male mice on HFHF diet for four weeks were treated with vehicle, Saroglitazar (3 mg/kg/po), and Hepano - a formulation of five herbs (200 mg/kg/po), at the human equivalent therapeutic doses for additional eight weeks. These animals were evaluated after 12 weeks for obesity, body mass index (BMI), systemic insulin resistance, hyperglycaemia, dyslipidaemia, and hepatic lipid accumulation. Differential liquid chromatography-mass spectrometry (LC-MS/MS) based lipidomics analysis demonstrated significant changes in the different class of lipids [phospholipids, sphingolipids, diglycerides and triglycerides (TG)] in HFHF fed group. The protective effects of both Saroglitazar and Hepano were evident against IR, obesity and in the modulation of different class of lipids in the circulation and hepatic tissue. Saroglitazar reduced TG as well as modulated phospholipids levels, while Hepano modulated only phospholipids, ceramides, oxidised lipids, and had no effect on hepatic or circulating TG levels in HFHF fed mice. In addition, in vitro studies using HepG2, THP1 and LX2 cells demonstrated safety of both the test substances where Hepano possess better anti-inflammatory as well as anti-fibrotic potential. Overall, Saroglitazar seems to be more efficacious than Hepano in the regimen used against HFHF induced IR, obesity, and dyslipidaemia. |
DOI: | 10.1016/j.biopha.2021.112357 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D321 | Saroglitazar | Chemical drug | DB13115 | PPARA agonist; PPARG agonist | Antidiabetic drug | Approved in India | Details |
D258 | Omega 3 PUFA | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Hypolipidemic drug | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D125 | Epanova | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Enhance lipid metabolism | Under clinical trials | Details |