Research Article Details
Article ID: | A14248 |
PMID: | 29507043 |
Source: | J Endocrinol |
Title: | Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver. |
Abstract: | Obesity is a major threat to public health, and it is strongly associated with insulin resistance and fatty liver disease. Here, we demonstrated that administration of Lactobacillus acidophilus NS1 (LNS1) significantly reduced obesity and hepatic lipid accumulation, with a concomitant improvement in insulin sensitivity, in high-fat diet (HFD)-fed mice. Furthermore, administration of LNS1 inhibited the effect of HFD feeding on the SREBP-1c and PPARα signaling pathways and reduced lipogenesis with an increase in fatty acid oxidation in ex vivo livers from HFD-fed mice. These LNS1 effects were confirmed in HepG2 cells and ex vivo livers by treatment with LNS1 culture supernatant (LNS1-CS). Interestingly, AMPK phosphorylation and activity in the liver of HFD-fed mice were increased by administration of LNS1. Consistently, chemical inhibition of AMPK with compound C, a specific inhibitor of AMPK, dramatically reduced the effect of LNS1-CS on lipid metabolism in HepG2 cells and ex vivo livers by modulating the SREBP-1c and PPARα signaling pathways. Furthermore, administration of LNS1 to HFD-fed mice significantly improved insulin resistance and increased Akt phosphorylation in the liver, white adipose tissue and skeletal muscle. Together, these data suggest that LNS1 may prevent diet-induced obesity and related metabolic disorders by improving lipid metabolism and insulin sensitivity through an AMPK→SREBP-1c/PPARα signaling pathway. |
DOI: | 10.1530/JOE-17-0592 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |