Research Article Details
Article ID: | A14395 |
PMID: | 29428667 |
Source: | Biomed Pharmacother |
Title: | Silybum marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. |
Abstract: | In the present study, the effects of Silybum marianum oil (SMO) on hepatic steatosis and oxidative stress were investigated during the development of nonalcoholic fatty liver disease (NAFLD) in high fat diet (HFD)-fed mice. The results showed that body weight, fat mass, and serum biochemical parameters such as triglyceride, free fatty acid, glucose and insulin were reduced by SMO treatment. Meanwhile, SMO decreased the histological injury of liver and the levels of hepatic triglyceride, cholesterol and free fatty acid in HFD-fed mice. SMO administration elevated the activities of superoxide dismutase (SOD) and catalase (CAT) and reduced the level of malondialdehyde (MDA) in the liver. Enzyme linked immunosorbent assay showed that SMO significantly decreased the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in HFD mice. Furthermore, the mRNA levels of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase (FAS) and liver X receptor α (LXRα) were lower, but peroxisome proliferator-activated receptor α (PPARα) was higher in mice treated with SMO compared with the HFD group. The results indicated that SMO could play a certain protective role against HFD-induced NAFLD, and the protective effects might be associated with attenuating lipid accumulation, oxidative stress and inflammation, improving lipid metabolism. |
DOI: | 10.1016/j.biopha.2018.01.144 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T08 | Tumor necrosis factor | TNF | inhibitor | Cytokine | P01375 | TNFA_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D335 | Silybum marianum | Herbal medicine | -- | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |