Research Article Details
Article ID: | A19867 |
PMID: | 26297911 |
Source: | Biochem Pharmacol |
Title: | A dipeptidyl peptidase-IV inhibitor improves hepatic steatosis and insulin resistance by AMPK-dependent and JNK-dependent inhibition of LECT2 expression. |
Abstract: | Leukocyte cell-derived chemotaxin 2 (LECT2) is a recently discovered hepatokine that mediates obesity-related metabolic disturbances. Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel therapeutic agents for inflammatory disorders including nonalcoholic fatty liver disease (NAFLD). However, no research has examined the connections or functions of LECT2 and the novel DPP-4 inhibitor, gemigliptin, in NAFLD pathogenesis. High-fat diet (HFD)-fed C57BL/6 mice were used to investigate the effect of gemigliptin on hepatic steatosis and LECT2 expression. In the HepG2 cell line, LECT2 and gemigliptin signaling were analyzed by Western blot. LECT2 increased mammalian target of rapamycin (mTOR) phosphorylation, sterol regulatory element-binding protein (SREBP)-1 cleavage, lipid accumulation, and insulin resistance in HepG2 cells; these events were significantly decreased by treatment with a c-Jun N-terminal kinase (JNK) inhibitor. Gemigliptin increased AMP-activated protein kinase (AMPK) phosphorylation and inhibited tumor necrosis factor (TNF) α-induced mTOR phosphorylation, SREBP-1 cleavage, lipid accumulation, and LECT2 expression in HepG2 cells; these events were attenuated by an AMPK inhibitor. Gemigliptin recovered TNFα-induced inhibition of insulin receptor substrate (IRS)-1 and Akt phosphorylation that was abolished in LECT2 knockdown cells or by AMPK inhibition. In preliminary in vivo experiments, gemigliptin induced AMPK phosphorylation and inhibited LECT2 expression in liver tissues from HFD-fed mice. Mice fed with HFD and gemigliptin showed improved hepatic steatosis and insulin resistance compared to HFD-fed mice. Gemigliptin might alleviate hepatic steatosis and insulin resistance by inhibiting LECT2 expression by AMPK-dependent and JNK-dependent mechanisms, suggesting a direct protective effect against NAFLD progression. |
DOI: | 10.1016/j.bcp.2015.08.098 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T08 | Tumor necrosis factor | TNF | inhibitor | Cytokine | P01375 | TNFA_HUMAN | Details |
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D612 | Rapamycin | Miscellany | -- | Immunosuppressants; Methylmalonyl CoA mutase stimulants; MTOR protein inhibitors; T lymphocyte inhibitors | -- | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |