Research Article Details
Article ID: | A27519 |
PMID: | 18203899 |
Source: | J Nutr |
Title: | Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. |
Abstract: | The incidence of nonalcoholic fatty liver disease (NAFLD) has risen along with the ongoing obesity epidemic. Green tea extract (GTE) inhibits intestinal lipid absorption and may regulate hepatic lipid accumulation. The objective of this study was to determine whether GTE protects against hepatic lipid accumulation during the development of NAFLD in an obese mouse model. Five-wk-old ob/ob (obese) mice and their lean littermates (8 mice x genotype(-1) x dietary treatment(-1)) were fed GTE at 0, 1, or 2% (wt:wt) for 6 wk. The body weights of obese mice and lean littermates fed diets containing GTE were 23-25% and 11-20% lower (P < 0.05) than their respective controls fed no GTE. Histologic evaluation showed a significant reduction in hepatic steatosis in GTE-fed obese mice only and histologic scores were correlated with hepatic lipid concentration (r = 0.84; P < 0.05), which was reduced dose dependently by GTE. GTE protected against hepatic injury as suggested by 30-41% and 22-33% lower serum alanine aminotransferase and aspartate aminotransferase activities, respectively. Hepatic alpha-tocopherol was 36% higher in obese mice than lean mice. GTE tended (P = 0.06) to lower hepatic alpha-tocopherol, which was not fully explained by the GTE-mediated reduction in hepatic lipid. Hepatic ascorbic acid was lower in obese mice than in lean mice (P < 0.05) and was unaltered by GTE. Obese mice had lower serum adiponectin than lean mice and this was not affected by GTE. The results suggest that GTE protects against NAFLD by limiting hepatic lipid accumulation and injury without affecting hepatic antioxidant status and adiponectin-mediated lipid metabolism. Further study is underway to define the events by which GTE protects against obesity-triggered NAFLD. |
DOI: | 10.1093/jn/138.2.323 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D386 | Vitamin C | Supplement | DB00126 | PLOD2 cofactor; PLOD3 cofactor; DBH cofactor; P3H1 cofactor; P3H2 cofactor; P3H3 cofactor; PLOD1 cofactor | -- | Under clinical trials | Details |
D388 | Vitamin E | Supplement | DB00163 | NR1I2; ALOX5; DGKA | Anti-inflammatory | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D008 | Alpha-tocopherol | Chemical drug | DB00163 | NR1I2; ALOX5; DGKA | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |