Research Article Details
Article ID: | A52761 |
PMID: | 22350143 |
Source: | J Nat Med |
Title: | Puerariae flos alleviates metabolic diseases in Western diet-loaded, spontaneously obese type 2 diabetic model mice. |
Abstract: | Puerariae flos extract (PFE) has been reported to have many effects, including preventing the development of hangovers, liver protective effects, and an estrogenic effect. In addition, some papers reported that PFE is effective against metabolic diseases, with hypolipidemic and hypoglycemic effects. However, the mechanism underlying such effects remains unclear. For the purpose of clarifying the effect of PFE on metabolic diseases related to the accumulation of visceral fat and to determine the mechanism of such action, TSOD mice, a multifactorial genetic disease animal model that spontaneously develops various metabolic diseases such as obesity and type 2 diabetes, were given a Western diet (WTD) as an environmental factor to prepare a disease model (TSOD-WTD). When TSOD mice were loaded with WTD, it was confirmed that metabolic diseases such as obesity and abnormal glucose/lipid metabolism are aggravated. In contrast, PFE treatment to TSOD-WTD mice was shown to suppress body weight gain and visceral fat accumulation, alleviated the abnormal glucose tolerance and hyperinsulinemia, as well as causing an increase in blood adiponectin. Furthermore, the suppression of liver enlargement was observed in PFE-treated mice, with suppression of fatty degeneration and anti-inflammatory effect. In addition, to clarify the mechanism of the hyperlipidemia-alleviating effects in the liver, we investigated the effect of PFE on the expression of genes involved in cholesterol homeostasis. PFE was associated with a significant increase in gene expression for cholesterol synthesis rate-limiting enzyme HMG-CoA reductase, cholesterol catabolization enzyme Cyp7A1, bile salt export pump adenosine triphosphate-binding cassette transporter B11, and low-density lipoprotein receptor involved in cholesterol uptake. The above results suggest that PFE acts to alleviate the effects of various metabolic diseases based on the accumulation of visceral adipose tissue, including obesity, diabetes, and hyperlipidemia, with the promotion of catabolization/excretion of cholesterol in the liver being a key mechanism of action. |
DOI: | 10.1007/s11418-012-0629-z |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T15 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | HMGCR | inhibitor | Enzyme | P04035 | HMDH_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |