Research Article Details
Article ID: | A09308 |
PMID: | 31796953 |
Source: | Am J Clin Nutr |
Title: | Metabolic effects of a prolonged, very-high-dose dietary fructose challenge in healthy subjects. |
Abstract: | BACKGROUND: Increased fructose intake has been associated with metabolic consequences such as impaired hepatic lipid metabolism and development of nonalcoholic fatty liver disease (NAFLD). OBJECTIVES: The aim of this study was to investigate the role of fructose in glucose and lipid metabolism in the liver, heart, skeletal muscle, and adipose tissue. METHODS: Ten healthy subjects (age: 28 ± 19 y; BMI: 22.2 ± 0.7 kg/m2) underwent comprehensive metabolic phenotyping prior to and 8 wk following a high-fructose diet (150 g daily). Eleven patients with NAFLD (age: 39.4 ± 3.95 y; BMI: 28.4 ± 1.25) were characterized as "positive controls." Insulin sensitivity was analyzed by a 2-step hyperinsulinemic euglycemic clamp, and postprandial interorgan crosstalk of lipid and glucose metabolism was evaluated, by determining postprandial hepatic and intra-myocellular lipid and glycogen accumulation, employing magnetic resonance spectroscopy (MRS) at 7 T. Myocardial lipid content and myocardial function were assessed by 1H MRS imaging and MRI at 3 T. RESULTS: High fructose intake resulted in lower intake of other dietary sugars and did not increase total daily energy intake. Ectopic lipid deposition and postprandial glycogen storage in the liver and skeletal muscle were not altered. Postprandial changes in hepatic lipids were measured [Δhepatocellular lipid (HCL)_healthy_baseline: -15.9 ± 10.7 compared with ± ΔHCL_healthy_follow-up: -6.9 ± 4.6; P = 0.17] and hepatic glycogen (Δglycogen_baseline: 64.4 ± 14.1 compared with Δglycogen_follow-up: 51.1 ± 9.8; P = 0.42). Myocardial function and myocardial mass remained stable. As expected, impaired hepatic glycogen storage and increased ectopic lipid storage in the liver and skeletal muscle were observed in insulin-resistant patients with NAFLD. CONCLUSIONS: Ingestion of a high dose of fructose for 8 wk was not associated with relevant metabolic consequences in the presence of a stable energy intake, slightly lower body weight, and potentially incomplete absorption of the orally administered fructose load. This indicated that young, metabolically healthy subjects can at least temporarily compensate for increased fructose intake. This trial was registered at www.clinicaltrials.gov as NCT02075164. |
DOI: | 10.1093/ajcn/nqz271 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |