Research Article Details
Article ID: | A11959 |
PMID: | 30668392 |
Source: | Phytomedicine |
Title: | Yangonin protects against non-alcoholic fatty liver disease through farnesoid X receptor. |
Abstract: | BACKGROUD: Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. Dyslipidemia, pathoglycemia and insulin resistance are the major risk factors for the development of NAFLD. To date, no effective drug therapies for this condition have been approved. PURPOSE: The present study was to investigate the protective effects of yangonin, a kavalactone isolated from Kava, against NAFLD and further elucidate the mechanisms in vivo and in vitro. STUDY DESIGN: A high-fat diet (HFD) induced mouse NAFLD model was used with or without yangonin treatment. METHODS: The body weight, relative liver weight and serum biochemical indicators were measured. H&E and Oil Red O staining were used to identify the amelioration of the liver histopathological changes. Serum and hepatic triglyceride, free fatty acids and total cholesterol were analyzed. siRNA, quantitative real-time PCR and Western blot assay were used to clarify the mechanisms underlying yangonin protection. RESULTS: Yangonin had obvious protective effects against NAFLD via farnesoid X receptor (FXR) activation. Through FXR activation, yangonin attenuated lipid accumulation in the liver via inhibition of hepatic lipogenesis-related protein including sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthetase (FAS), acetyl-CoA carboxylase 1 (ACC1) and stearoyl-CoA desaturase 1 (SCD1). Besides, yangonin promoted lipid metabolism through an induction in genes required for lipoprotein lipolysis and fatty acid β-oxidation. Furthermore, yangonin modulated blood glucose homeostasis through regulation of gluconeogenesis-related gene phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), and glycogen synthesis-related gene glycogen synthase kinase 3β (GSK3β) and pyruvate dehydrogenase (PDase). Also, yangonin increased insulin sensitivity through upregulating phosphorylation of insulin responsive substrate 1, 2 (IRS-1 and IRS-2). Then, in vivo and in vitro evidence further demonstrated the involvement of FXR activation in yangonin hepatoprotection. CONCLUSIONS: Yangonin protects against NAFLD due to its activation of FXR signalling to inhibit hepatic lipogenesis and gluconeogenesis, and to promote lipid metabolism and glycogen synthesis, as well as insulin sensitivity. |
DOI: | 10.1016/j.phymed.2018.09.006 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T17 | Farnesoid X-activated receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T22 | Stearoyl-CoA desaturase | SCD | inhibitor | Enzyme | O00767 | SCD_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D589 | Minor allele-specific small interfering RNA | Miscellany | -- | PNPLA3-rs738409 (I148M) variant inhibitor | -- | Under investigation | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |